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Abstract

In the recent talk, we try to obtain some combinatorial principles as in,
see e.g., [1], from ”seemingly” innocent algebraic or topological proper-
ties of C∗- algebras, although the definitions are well-known and actually
they strictly relies on ZFC, it turns out that many open questions are simply
equivalent to combinatorial ones, which definitely cannot be derived in ZFC.

Moreover, if the ”obvious” implication: Model of ZFC implies ”alge-
braic” or ”topological property”, respectively. We shall give a long list of
such of implications, which hold not only in our category of the main inte-
rest, but in general, in much more abstract sence, i.e, for any abelian category
of modules (including topological rings and topological modules over them
as a particular instance of it), for example, you may find the following refe-
rences as useful: [2] and [3, 4].

However, what is more difficult, actually, is to establish, if possible, the
other direction, namely, which is exactly the combinatorial principle we are
dealing with. Equivalently, which is the lattice condition, i.e Boolean Alge-
braic condition, which can be forced in virtue of [5] to manifest their inde-
pendence of ZFC.
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